Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Tissue Eng Part A ; 30(1-2): 84-93, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917102

RESUMO

Background: The ability to reinnervate a muscle in the absence of a viable nerve stump is a challenging clinical scenario. Direct muscle neurotization (DMN) is an approach to overcome this obstacle; however, success depends on the formation of new muscle endplates, a process, which is often limited due to lack of appropriate axonal pathfinding cues. Objective: This study explored the use of a porcine nerve extracellular matrix hydrogel as a neuroinductive interface between nerve and muscle in a rat DMN model. The goal of the study was to establish whether such hydrogel can be used to improve neuromuscular function in this model. Materials and Methods: A common peroneal nerve-to-gastrocnemius model of DMN was developed. Animals were survived for 2 or 8 weeks following DMN with or without the addition of the hydrogel at the site of neurotization. Longitudinal postural thrust, terminal electrophysiology, and muscle weight assessments were performed to qualify and quantify neuromuscular function. Histological assessments were made to qualify the host response at the DMN site, and to quantify neuromuscular junctions (NMJs) and muscle fiber diameter. Results: The hydrogel-treated group showed a 132% increase in postural thrust at 8 weeks compared with that of the DMN alone group. This was accompanied by an 80% increase in the number of NMJs at 2 weeks, and 26% increase in mean muscle fiber diameter at 8 weeks. Conclusions: These results suggest that a nerve-derived hydrogel may improve the neuromuscular outcome following DNM.


Assuntos
Transferência de Nervo , Ratos , Animais , Suínos , Transferência de Nervo/métodos , Hidrogéis/farmacologia , Regeneração Nervosa , Fibras Musculares Esqueléticas , Junção Neuromuscular , Músculo Esquelético/patologia
2.
J Tissue Eng ; 14: 20417314231197282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029018

RESUMO

Female cancer patients who have undergone chemotherapy have an elevated risk of developing ovarian dysfunction and failure. Experimental approaches to treat iatrogenic infertility are evolving rapidly; however, challenges and risks remain that hinder clinical translation. Biomaterials have improved in vitro follicle maturation and in vivo transplantation in mice, but there has only been marginal success for early-stage human follicles. Here, we developed methods to obtain an ovarian-specific extracellular matrix hydrogel to facilitate follicle delivery and establish an in situ ovary (ISO), which offers a permissive environment to enhance follicle survival. We demonstrate sustainable follicle engraftment, natural pregnancy, and the birth of healthy pups after intraovarian microinjection of isolated exogenous follicles into chemotherapy-treated (CTx) mice. Our results confirm that hydrogel-based follicle microinjection could offer a minimally invasive delivery platform to enhance follicle integration for patients post-chemotherapy.

3.
Plast Reconstr Surg ; 152(3): 458e-467e, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946873

RESUMO

BACKGROUND: Nerve transection is the most common form of peripheral nerve injury. Treatment of peripheral nerve injury has primarily focused on stabilization and mechanical cues to guide extension of the regenerating growth cone across the site of transection. The authors investigated the effects of a peripheral nerve matrix (PNM) hydrogel on recovery after nerve transection. METHODS: The authors used rodent models to determine the effect of PNM on axon extension, electrophysiologic nerve conduction, force generation, and neuromuscular junction formation after nerve transection and repair. The authors complemented this work with in vivo and in vitro fluorescence-activated cell sorting and immunohistochemistry approaches to determine the effects of PNM on critical cell populations early after repair. RESULTS: Extension of axons from the proximal stump and overall green fluorescent protein-positive axon volume within the regenerative bridge were increased in the presence of PNM compared with an empty conduit ( P < 0.005) 21 days after repair. PNM increased electrophysiologic conduction (compound muscle action potential amplitude) across the repair site ( P < 0.05) and neuromuscular junction formation ( P = 0.04) 56 days after repair. PNM produced a shift in macrophage phenotype in vitro and in vivo ( P < 0.05) and promoted regeneration in a murine model used to characterize the early immune response to PNM ( P < 0.05). CONCLUSION: PNM, delivered by subepineural injection, promoted recovery after nerve transection with immediate repair, supporting a beneficial macrophage response, axon extension, and downstream remodeling using a range of clinically relevant outcome measures. CLINICAL RELEVANCE STATEMENT: This article describes an approach for subepineural injection at the site of nerve coaptation to modulate the response to injury and improve outcomes.


Assuntos
Traumatismos dos Nervos Periféricos , Camundongos , Animais , Traumatismos dos Nervos Periféricos/cirurgia , Hidrogéis , Nervos Periféricos/fisiologia , Axônios , Condução Nervosa , Regeneração Nervosa/fisiologia
4.
J Biomed Mater Res A ; 110(11): 1738-1748, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36082974

RESUMO

Neuroma formation following limb amputation is a prevalent and debilitating condition that can deeply affect quality of life and productivity. Several approaches exist to prevent or treat neuromas; however, no approach is either consistently reliable or surgically facile, with high rates of neuroma occurrence and/or recurrence. The present study describes the development and testing of a xenogeneic nerve cap graft made from decellularized porcine nerve. The grafts were tested in vitro for cellular removal, cytotoxicity, mechanical properties, and morphological characteristics. The grafts were then tested in rat sciatic nerve gap reconstruction and nerve amputation models for 8 weeks. Gross morphology, electrophysiology, and histopathology assessments were performed to determine the ability of the grafts to limit pathologic nerve regrowth. In vitro testing showed well decellularized and demyelinated nerve cap graft structures without any cytotoxicity from residual reagents. The grafts had a proximal socket for the proximal nerve stump and longitudinally oriented internal pores. Mechanical and surgical handling properties suggested suitability for implantation as a nerve graft. Following 8 weeks in vivo, the grafts were well integrated with the proximal and distal nerve segments without evidence of fibrotic adhesions to the surrounding tissues or bulbous outgrowth of the nerve. Electrophysiology revealed absence of nerve conduction within the remodeled nerve cap grafts and significant downstream muscle atrophy. Histologic evaluation showed well organized but limited axonal regrowth within the grafts without fibrous overgrowth or neuromatous hypercellularity. These results provide proof of concept for a novel xenograft-based approach to neuroma prevention.


Assuntos
Neuroma , Qualidade de Vida , Animais , Axônios , Xenoenxertos , Humanos , Regeneração Nervosa , Neuroma/patologia , Neuroma/prevenção & controle , Ratos , Nervo Isquiático/cirurgia , Suínos
5.
PLoS One ; 17(8): e0273336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36006938

RESUMO

Temporomandibular joint (TMJ) Meniscus removal is an option for the patient to regain full range of motion if the disc is irreversibly damaged or unable to be reduced. However, this procedure leaves the joint vulnerable to condylar remodeling and degeneration. We have shown that extracellular matrix (ECM) scaffolds remodel into a tissue with near native TMJ meniscus in previous studies. The next step towards clinical translation is to manufacture the ECM scaffold as a device under good manufacturing practices (GMP) and test it in a pre-clinical animal study under good laboratory practices (GLP). The primary objective of this study was to evaluate the in-vivo histopathological response to a Prototype GMP manufactured device made of decellularized porcine small intestinal submucosa (SIS), by observing for signs of surrounding tissue reaction to the device that are indicative of an adverse host response in comparison to an empty control at 21 days post-surgical implantation in a canine TMJ meniscus removal and implant model in a GLP setting. The conclusive findings were that the ECM device is safe for placement in the TMJ. After 21 days post implantation, histology of tissue surrounding the device and draining lymph nodes showed that the Prototype GMP device had no negative effects compared to the empty site (as evaluated by the board-certified veterinary pathologist). Furthermore, there was a lack of negative findings for clinical pathology (hematology and clinical chemistry), mortality, and body weight/weight change. Future studies will go to one year after implantation to show that the remodel device remains as a viable tissue with near native mechanical properties.


Assuntos
Menisco , Disco da Articulação Temporomandibular , Animais , Cães , Matriz Extracelular/química , Intestino Delgado , Próteses e Implantes , Suínos , Articulação Temporomandibular , Disco da Articulação Temporomandibular/fisiologia , Disco da Articulação Temporomandibular/cirurgia , Engenharia Tecidual/métodos , Tecidos Suporte/efeitos adversos
6.
Muscle Nerve ; 65(2): 247-255, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34738250

RESUMO

INTRODUCTION/AIMS: While the peripheral nervous system has the inherent ability to recover following injury, results are often unsatisfactory, resulting in permanent functional deficits and disability. Therefore, methods that enhance regeneration are of significant interest. The present study investigates an injectable nerve-tissue-specific hydrogel as a biomaterial for nerve regeneration in a rat nerve crush model. METHODS: Nerve-specific hydrogels were injected into the subepineurial space in both uninjured and crushed sciatic nerves of rats to assess safety and efficacy, respectively. The animals were followed longitudinally for 12 wk using sciatic functional index and kinematic measures. At 12 wk, electrophysiologic examination was also performed, followed by nerve and muscle histologic assessment. RESULTS: When the hydrogel was injected into an uninjured nerve, no differences in sciatic functional index, kinematic function, or axon counts were observed. A slight reduction in muscle fiber diameter was observed in the hydrogel-injected animals, but overall muscle area and kinematic function were not affected. Hydrogel injection following nerve crush injury resulted in multiple modest improvements in sciatic functional index and kinematic function with an earlier return to normal function observed in the hydrogel treated animals as compared to untreated controls. While no improvements in supramaximal compound motor action potential were observed in hydrogel treated animals, increased axon counts were observed on histologic assessment. DISCUSSION: These improvements in functional and histologic outcomes in a rapidly and fully recovering model suggest that injection of a nerve-specific hydrogel is safe and has the potential to improve outcomes following nerve injury.


Assuntos
Lesões por Esmagamento , Hidrogéis , Animais , Lesões por Esmagamento/patologia , Compressão Nervosa , Regeneração Nervosa/fisiologia , Ratos , Roedores , Nervo Isquiático/lesões
7.
Tissue Eng Part A ; 28(9-10): 447-457, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34809494

RESUMO

The temporomandibular joint (TMJ) disc is a fibrocartilaginous tissue located between the condyle of the mandible and glenoid fossa and articular eminence of the temporal bone. Damage or derangement of the TMJ disc can require surgical removal (discectomy) to restore function. Removal of the TMJ disc, however, leaves the joint space vulnerable to condylar remodeling and degradation, potentially leading to long-term complications. No consistently effective clinical option exists for repair or replacement of the disc following discectomy. This study investigates the use of an acellular scaffold composed of extracellular matrix (ECM) derived from small intestinal submucosa (SIS) as a regenerative template for the TMJ disc in a porcine model. Acellular SIS ECM scaffolds were implanted following discectomy and allowed to remodel for 2, 4, 12, and 24 weeks postimplantation. Remodeling of the implanted device was assessed by longitudinal magnetic resonance imaging (MRI) over the course of 6 months, as well as gross morphologic, histologic, biochemical, and biomechanical analysis (tension and compression) of explanted tissues (disc and condyle) at the time of sacrifice. When the scaffold remained in the joint space, longitudinal MRI demonstrated that the scaffolds promoted new tissue formation within the joint space throughout the study period. The scaffolds were rapidly populated with host-derived cells and remodeled with formation of new, dense, aligned fibrocartilage resembling native tissue as early as 1 month postimplantation. De-novo formation of peripheral muscular and tendinous attachments resembling those in native tissue was also observed. The remodeled scaffolds approached native disc biochemical composition and compressive modulus, and possessed 50% of the tensile modulus within 3 months postimplantation. No degradation of the condylar surface was observed. These results suggest that this acellular bioscaffold fills a medical need for which there is currently no effective treatment and may represent a clinically relevant "off-the-shelf" implant for reconstruction of the TMJ disc.


Assuntos
Matriz Extracelular , Disco da Articulação Temporomandibular , Animais , Matriz Extracelular/química , Suínos , Articulação Temporomandibular/cirurgia , Disco da Articulação Temporomandibular/patologia , Disco da Articulação Temporomandibular/cirurgia
8.
Aging (Albany NY) ; 13(13): 16938-16956, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34292877

RESUMO

Macrophage accumulation and nitrosative stress are known mechanisms underlying age-related cardiovascular pathology and functional decline. The cardiac muscle microenvironment is known to change with age, yet the direct effects of these changes have yet to be studied in-depth. The present study sought to better elucidate the role that biochemical and biomechanical alterations in cardiac tissue have in the altered phenotype and functionality of cardiac resident macrophages observed with increasing age. To accomplish this, naïve bone marrow derived macrophages from young mice were seeded onto either functionalized poly-dimethyl-siloxane hydrogels ranging in stiffness from 2kPA to 64kPA or onto tissue culture plastic, both of which were coated with either young or aged solubilized mouse cardiac extracellular matrix (cECM). Both biomechanical and biochemical alterations were found to have a significant effect on macrophage polarization and function. Increased substrate stiffness was found to promote macrophage morphologies associated with pro-inflammatory macrophage activation, increased expression of pro-inflammatory inducible nitric oxide synthase protein with increased nitric oxide secretion, and attenuated arginase activity and protein expression. Additionally, exposure to aged cECM promoted attenuated responsivity to both canonical pro-inflammatory and anti-inflammatory cytokine signaling cues when compared to young cECM treated cells. These results suggest that both biomechanical and biochemical changes in the cardiovascular system play a role in promoting the age-related shift towards pro-inflammatory macrophage populations associated with cardiovascular disease development.


Assuntos
Microambiente Celular/fisiologia , Coração/fisiologia , Macrófagos/fisiologia , Macrófagos/ultraestrutura , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Arginase/metabolismo , Fenômenos Biomecânicos , Células da Medula Óssea , Citocinas/metabolismo , DNA/biossíntese , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fenótipo , Transdução de Sinais , Técnicas de Cultura de Tecidos
9.
Tissue Eng Part A ; 27(3-4): 165-176, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32539568

RESUMO

Respiratory function in the horse can be severely compromised by arytenoid chondritis, or arytenoid chondropathy, a pathologic condition leading to deformity and dysfunction of the affected cartilage. Current treatment in cases unresponsive to medical management is removal of the cartilage, which can improve the airway obstruction, but predisposes the patient to other complications like tracheal penetration of oropharyngeal content and dynamic collapse of the now unsupported soft tissue lateral to the cartilage. A tissue engineering approach to reconstructing the arytenoid cartilage would represent a significant advantage in the management of arytenoid chondritis. In this study, we explored if decellularized matrix could potentially be incorporated into the high motion environment of the arytenoid cartilages of horses. Equine arytenoid cartilages were decellularized and a portion of the resultant acellular scaffolds was implanted in a full-thickness defect created in the arytenoids of eight horses. The implantation was performed bilaterally in each horse, with one side randomly selected to receive an implant seeded with autologous bone marrow-derived nucleated cells (BMNCs). Arytenoids structure and function were monitored up to 4 months. In vivo assessments included laryngeal ultrasound, and laryngeal endoscopy at rest and during exercise on a high-speed treadmill. Histologic evaluation of the arytenoids was performed postmortem. Implantation of the cartilaginous graft had no adverse effect on laryngeal respiratory function or swallowing, despite induction of a transient granuloma on the medial aspect of the arytenoids. Ultrasonographic monitoring detected a postoperative increase in the thickness and cross-sectional area of the arytenoid body that receded faster in the arytenoids not seeded with BMNCs. The explanted tissue showed epithelialization of the mucosal surface, integration of the implant into the native arytenoid, with minimal adverse cellular reaction. Remodeling of the scaffold material was evident by 2 months after implantation. Preseeding the scaffold with BMNCs increased the rate of scaffold degradation and incorporation. Replacement of arytenoid portion with a tissue-engineered cartilaginous graft preseeded with BMNCs is surgically feasible in the horse, is well tolerated, and results in appropriate integration within the native tissue, also preventing laryngeal tissue collapse during exercise.


Assuntos
Doenças das Cartilagens , Laringe , Animais , Cartilagem Aritenoide/diagnóstico por imagem , Cartilagem Aritenoide/cirurgia , Cavalos , Laringe/cirurgia , Engenharia Tecidual , Ultrassonografia
10.
Biomater Sci ; 8(20): 5751-5762, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32945303

RESUMO

The host macrophage response to implants has shown to be affected by tissue location and physio-pathological conditions of the patient. Success in immunomodulatory strategies is thus predicated on the proper understanding of the macrophage populations participating on each one of these contexts. The present study uses an in vivo implantation model to analyze how immunomodulation via an IL-4 eluting implant affects distinct macrophage populations at the tissue-implant interface and how this may affect downstream regenerative processes. Populations identified as F4/80+, CD68+ and CD11b+ macrophages at the peri-implant space showed distinct susceptibility to polarize towards an M2-like phenotype under the effects of delivered IL-4. Also, the presence of the coating resulted in a significant reduction in F4/80+ macrophages, while other populations remained unchanged. These results suggests that the F4/80+ macrophage population may be predominant in the early stages of the host response at the surface of these implants, in contrast to CD11b+ macrophage populations which were either fewer in number or located more distant from the implant surface. Gene expression assays showed increased proteolytic activity and diminished matrix deposition as possible mechanisms explaining the decreased fibrotic capsule deposition and improved peri-implant tissue quality shown in previous studies using IL-4 eluting coatings. The pattern of M2-like gene expression promoted by IL-4 was correlated with glycosaminoglycan production within the site of implantation at early stages of the host response, suggesting a significant role in this response. These findings demonstrate that immunomodulatory strategies can be utilized to design and implement targeted delivery for improving biomaterial performance.


Assuntos
Interleucina-4 , Macrófagos , Humanos , Imunomodulação , Fenótipo , Próteses e Implantes
11.
Transl Vis Sci Technol ; 9(8): 17, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32855864

RESUMO

Purpose: Studying the extracellular matrix (ECM) remodeling of the lamina cribrosa in vivo can be extremely challenging and costly. There exist very few options for studying optic nerve head (ONH) mechanobiology in vitro that are able to reproduce the complex anatomic and biomechanical environment of the ONH. Herein, we have developed a decellularization procedure that will enable more anatomically relevant and cost-efficient future studies of ECM remodeling of the ONH. Methods: Porcine posterior poles were decellularized using a detergent and enzyme-based decellularization protocol. DNA quantification and histology were used to investigate the effectiveness of the protocol. We subsequently investigated the ability of a polyethylene glycol (PEG)-based hydrogel to restore the ONH's ability to hold pressure following decellularization. Anterior-posterior displacement of the decellularized and PEG treated ONH in a pressure bioreactor was used to evaluate the biomechanical response of the ONH. Results: DNA quantification and histology confirmed decellularization using Triton X-100 at low concentration for 48 hours successfully reduced the cellular content of the tissue by 94.9% compared with native tissue while preserving the ECM microstructure and basal lamina of the matrix. Infiltrating the decellularized tissues with PEG 6000 and PEG 10,000 hydrogel restored their ability to hold pressure, producing displacements similar to those measured for the non-decellularized control samples. Conclusions: Our decellularized ONH model is capable of producing scaffolds that are cell-free and maintain the native ECM microstructure. Translational Relevance: This model represents a platform to study the mechanobiology in the ONH and potentially for glaucoma drug testing.


Assuntos
Glaucoma , Disco Óptico , Tetrahymenina , Animais , Biofísica , Matriz Extracelular , Suínos
12.
Methods ; 171: 41-61, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31398392

RESUMO

A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.


Assuntos
Matriz Extracelular/transplante , Sistema Nervoso/crescimento & desenvolvimento , Medicina Regenerativa/tendências , Engenharia Tecidual , Animais , Matriz Extracelular/química , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Sistema Nervoso/efeitos dos fármacos , Tecidos Suporte/química
13.
Am J Pathol ; 190(2): 372-387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843499

RESUMO

Aging is associated with inflammation and metabolic syndrome, which manifests in the liver as nonalcoholic fatty liver disease (NAFLD). NAFLD can range in severity from steatosis to fibrotic steatohepatitis and is a major cause of hepatic morbidity. However, the pathogenesis of NAFLD in naturally aged animals is unclear. Herein, we performed a comprehensive study of lipid content and inflammatory signature of livers in 19-month-old aged female mice. These animals exhibited increased body and liver weight, hepatic triglycerides, and inflammatory gene expression compared with 3-month-old young controls. The aged mice also had a significant increase in F4/80+ hepatic macrophages, which coexpressed CD11b, suggesting a circulating monocyte origin. A global knockout of the receptor for monocyte chemoattractant protein (CCR2) prevented excess steatosis and inflammation in aging livers but did not reduce the number of CD11b+ macrophages, suggesting changes in macrophage accumulation precede or are independent from chemokine (C-C motif) ligand-CCR2 signaling in the development of age-related NAFLD. RNA sequencing further elucidated complex changes in inflammatory and metabolic gene expression in the aging liver. In conclusion, we report a previously unknown accumulation of CD11b+ macrophages in aged livers with robust inflammatory and metabolic transcriptomic changes. A better understanding of the hallmarks of aging in the liver will be crucial in the development of preventive measures and treatments for end-stage liver disease in elderly patients.


Assuntos
Envelhecimento/patologia , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CCR2/metabolismo , Envelhecimento/metabolismo , Animais , Peso Corporal , Quimiocina CCL2/genética , Feminino , Perfilação da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tamanho do Órgão , Receptores CCR2/genética
14.
Mater Sci Eng C Mater Biol Appl ; 102: 276-288, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147000

RESUMO

Stellite 6 components are manufactured from gas-atomized powder using binder-jet 3D-printing (BJ3DP) followed by curing and sintering steps for densification. Green parts are sintered at temperatures ranging from 1260 °C to 1310 °C for 1 h. Microstructural evolution and phase formation during sintering and aging are studied by optical and scanning electron microscopy, elemental analysis and X-ray diffraction. It was found that solid-state sintering was present at temperatures below 1280 °C with Cr-rich carbides present within grains; while supersolidus liquid phase sintering was the dominant sintering mechanism during sintering at 1290 °C and higher in which the Co-rich solid solution regions are surrounded by eutectic carbides. Sintering at 1300 °C resulted in the maximum density of ~99.8%, mean grain size of ~98 ±â€¯6 µm with an average hardness of 307 ±â€¯15 HV0.1 and 484 ±â€¯30 HV0.1 within grain and at the boundaries, respectively. Aging was performed at 900 °C for 10 h leading to the martensitic transformation (fcc → hcp) as well as an increase in eutectic carbides at boundaries and nano-sized carbides within grains where the average hardness within grains and boundaries was enhanced to 322 ±â€¯29 HV0.1 and 491 ±â€¯58 HV0.1, respectively. Fibroblasts seeded on top of 3D-printed Stellite 6 discs displayed a cell viability of 98.8% ±â€¯0.2% after 48 h, which confirmed that these materials are non-cytotoxic. Presented results demonstrate that binder jetting can produce mechanically sound complex-shaped structures as shown here on a denture metal framework and small-scale knee model.


Assuntos
Ligas de Cromo/química , Temperatura Alta , Impressão Tridimensional , Animais , Morte Celular , Elementos Químicos , Fibroblastos/citologia , Dureza , Processamento de Imagem Assistida por Computador , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Espectrometria por Raios X , Termodinâmica , Difração de Raios X
15.
J Control Release ; 305: 65-74, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31103676

RESUMO

The role of innate immunity and macrophages in the host response to biomaterials has received renewed attention. A context-dependent spectrum of macrophage phenotypes are shown to affect tissue integration and performance of implanted biomaterials and medical devices. Recent studies by our group demonstrated that the host response in aged animals was characterized by delayed macrophage recruitment, differences in marker expression and a shifted pro-inflammatory (M1) response, associated with an unresolved host response in the long-term. The present work sought to study the effects of single and sequential cytokine delivery regimens in aged mice to restore delayed recruitment of macrophages and shift the inflammatory host response towards an M2-like phenotype, using MCP-1 (macrophage chemotactic protein-1) and IL-4 (interleukin-4), respectively. Implantation of cytokine-eluting implants showed a preserved response to MCP-1 in both young and aged animals, restoring delayed macrophage recruitment in aged mice. However, the response elicited by IL-4, sequential delivery of MCP-1/IL-4 and coating components was distinct in young versus aged mice. While single delivery of IL-4 did not counteract the high inflammatory response observed in aged mice, the sequential delivery of MCP-1/IL-4 was capable of restoring both recruitment and shifting the macrophage response towards an M2-like phenotype, associated with decreased implant scarring in the long-term. In young mice, sequential delivery was not as effective as IL-4 alone at promoting an M2-like response, but did result in a reduction of M1 macrophages and capsule deposition downstream. These results demonstrate that a proper understanding of patient/context-dependent biological responses are needed to design biomaterial-based therapies with improved outcomes in the setting of aging.


Assuntos
Quimiocina CCL2/administração & dosagem , Interleucina-4/administração & dosagem , Macrófagos/efeitos dos fármacos , Envelhecimento , Animais , Quimiocina CCL2/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Inflamação/imunologia , Inflamação/prevenção & controle , Interleucina-4/farmacologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Próteses e Implantes
16.
Biomaterials ; 203: 86-95, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30857644

RESUMO

An essential structure in nerve regeneration within engineered conduits is the "nerve bridge" initiated by centrally migrating Schwann cells in response to chemokine gradients. Introducing exogenous cells secreting neurotrophic factors aims to augment this repair process, but conventional cell-seeding methods fail to produce a directional chemokine gradient. We report a versatile method to encapsulate cells within conduit walls, allowing for reproducible control of spatial distribution along the conduit. Conduits with stem cells encapsulated within the central third possessed markedly different cell distribution and retention over 6 weeks in vivo, compared to standard cell lumen injection. Such a construct promoted Schwann cell migration centrally, and at 16 weeks rats presented with significantly enhanced function and axonal myelination. The method of utilizing a spatially restricted cell secretome departs from traditional homogeneous cell loading, and presents new approaches for studying and maximizing the potential of cell application in peripheral nerve repair.


Assuntos
Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Animais , Citoesqueleto/metabolismo , Regeneração Tecidual Guiada/métodos , Hidrogéis/química , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Células de Schwann/citologia , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia , Engenharia Tecidual/métodos , Tecidos Suporte/química
17.
Front Immunol ; 9: 2795, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555477

RESUMO

The number of individuals aged 65 or older is projected to increase globally from 524 million in 2010 to nearly 1. 5 billion in 2050. Aged individuals are particularly at risk for developing chronic illness, while being less able to regenerate healthy tissue and tolerate whole organ transplantation procedures. In the liver, these age-related diseases include non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis. Hepatic macrophages, a population comprised of both Kupffer cells and infiltrating monocyte derived macrophages, are implicated in several chronic liver diseases and also play important roles in the homeostatic functions of the liver. The effects of aging on hepatic macrophage population dynamics, polarization, and function are not well understood. Studies performed on macrophages derived from other aged sources, such as the bone marrow, peritoneal cavity, lungs, and brain, demonstrate general reductions in autophagy and phagocytosis, dysfunction in cytokine signaling, and altered morphology and distribution, likely mediated by epigenetic changes and mitochondrial defects, that may be applicable to hepatic macrophages. This review highlights recent findings in macrophage developmental biology and function, particularly in the liver, and discusses the role of macrophages in various age-related liver diseases. A better understanding of the biology of aging that influences hepatic macrophages and thus the progression of chronic liver disease will be crucial in order to develop new interventions and treatments for liver disease in aging populations.


Assuntos
Envelhecimento/imunologia , Células de Kupffer/imunologia , Hepatopatias/imunologia , Envelhecimento/patologia , Animais , Autofagia/imunologia , Citocinas/imunologia , Humanos , Células de Kupffer/patologia , Hepatopatias/patologia , Hepatopatias/terapia , Fagocitose , Transdução de Sinais/imunologia
18.
Biomaterials ; 187: 93-104, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312852

RESUMO

Whole organ tissue engineering is a promising approach to address organ shortages in many applications, including lung transplantation for patients with chronic pulmonary disease. Engineered lungs may be derived from animal sources after removing cellular content, exposing the extracellular matrix to serve as a scaffold for recellularization with human cells. However, the use of xenogeneic tissue sources in human transplantation raises concerns due to the presence of the antigenic Gal epitope. In the present study, lungs from wild type or α-Gal knockout pigs were harvested, decellularized, and implanted subcutaneously in a non-human primate model to evaluate the host immune response. The decellularized porcine implants were compared to a sham surgery control, as well as native porcine and decellularized macaque lung implants. The results demonstrated differential profiles of circulating and infiltrating immune cell subsets and histological outcomes depending on the implanted tissue source. Upon implantation, the decellularized α-Gal knockout lung constructs performed similarly to the decellularized wild type lung constructs. However, upon re-implantation into a chronic exposure model, the decellularized wild type lung constructs resulted in a greater proportion of infiltrating CD45+ cells, including CD3+ and CD8+ cytotoxic T-cells, likely mediated by an increase in production of Gal-specific antibodies. The results suggest that removal of the Gal epitope can potentially reduce adverse inflammatory reactions associated with chronic exposure to engineered organs containing xenogeneic components.


Assuntos
Galactosiltransferases/genética , Pneumopatias/terapia , Pulmão/citologia , Tecidos Suporte , Imunidade Adaptativa , Animais , Materiais Biocompatíveis , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes , Humanos , Imunidade Humoral , Pneumopatias/imunologia , Macaca mulatta , Suínos , Engenharia Tecidual , Transplante , Transplante Heterólogo
19.
J Immunol Regen Med ; 1: 57-66, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30101208

RESUMO

Extracellular matrix biomaterials have been shown to promote constructive remodeling in many preclinical and clinical applications. This response has been associated with the promotion of a timely switch from pro-inflammatory (M1) to anti-inflammatory (M2) macrophages. A previous study has shown that this beneficial response is lost when these biomaterials are derived from aged animals. This study examined the impact of small intestine submucosa (SIS) derived from 12, 26 and 52 week old pigs on the phenotype and function of bone marrow macrophages derived either from 2 or 18 month old mice. Results showed that 52 week old SIS promoted less iNOS in 2 month macrophages and Fizz1 expression in 2 and 18 month compared to 12 week SIS. Pro-inflammatory cytokine exposure to 52 week SIS-treated macrophages resulted in higher iNOS in 18 month macrophages and reduced MHC-II expression in 2 month macrophages, as well as reduced nitric oxide production in comparison to 12 week SIS. These results indicate that ECM derived from aged animals promotes an altered macrophage phenotype compared to young controls. This suggests that sourcing of ECM from young donors is important to preserve constructive remodeling outcomes of ECM biomaterials. Alteration of macrophage phenotype by aged ECM also raises the hypothesis that alterations in aged ECM may play a role in immune dysfunction in aged individuals.

20.
J Biomed Mater Res A ; 106(7): 2078-2085, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29569359

RESUMO

We have performed three distinct plasma enhanced chemical vapor deposition procedures that can be widely and consistently used in commercially available plasma systems to modify the surface of hydrocarbon-based biomaterials such as polypropylene. In particular, we have evaluated the feasibility of these procedures to provide consistent and stable charged substrates to perform layer-by-layer (LbL) coatings. Surface characterization of both plasma and LbL coatings were done using X-ray photoelectron spectroscopy, attenuated total reflection-Fourier transform infrared spectroscopy, contact angle measurements and surface staining. Results showed successful surface grafting of functional groups in all plasma procedures that led to increased hydrophilicity and uniform LbL coatings with different efficiencies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2078-2085, 2018.


Assuntos
Polieletrólitos/química , Polipropilenos/química , Alilamina/química , Anidridos Maleicos/química , Oxigênio/química , Espectroscopia Fotoeletrônica , Gases em Plasma/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...